

GAMtools: Utilities for working with Genome Architecture Mapping data.

GAMtools is a collection of utilities for working with Genome Architecture Mapping
data. GAM is a technique for mapping 3D genome architecture by sequencing genomic
DNA from thin nuclear sections (nuclear profiles or NPs). GAMtools can be used to automate
the mapping and processing of sequencing data from NPs, to identify genomic regions
present in each NP, and to calculate proximity matrices based on the co-segregation
of genomic regions in a dataset of many NPs.

Tutorial

The GAMtools tutorial covers some of the basic use cases for GAMtools, and will guide
you through re-mapping and re-processing of some example GAM data.

Contents

	Overview
	Summary of available tools.

	Installation
	Installing stable releases using pip

	Installing from source (GitHub)

	Troubleshooting

	Mandatory dependencies

	Optional dependencies

	Testing your installation

	Tutorial
	First steps

	Mapping the sequencing data and calling positive windows

	Producing proximity matrices

	Working at different resolutions

	Performing quality control checks

	API documentation
	Background

Tools

	call_windows
	Usage and option summary

	compaction
	Usage and option summary

	convert
	Usage and option summary

	enrichment
	Usage and option summary

	matrix
	Usage and option summary

	permute_segregation
	Usage and option summary

	plot_np
	Usage and option summary

	process_nps
	Usage and option summary

	radial_pos
	Usage and option summary

	select
	Usage and option summary

GAMtools links

	Source code on GitHub [https://github.com/pombo-lab/GAMtools]

	Issue tracker [https://github.com/pombo-lab/GAMtools/issues]

	GAMtools paper [http://gam.tools/paper]

	Pombo lab website [https://pombolab.wordpress.com]

Indices and tables

	Index

	Module Index

	Search Page

License

GAMtools is freely available under the Apache License, Version 2.0

Overview

Summary of available tools.

GAMtools provides a number of different utilities for working with GAM data. The table below summarizes
the tools available in the suite.

	Utility
	Description

	call_windows
	Call positive windows for individual NPs

	compaction
	Calculate chromatin compaction

	convert
	Convert between different GAM matrix formats

	enrichment
	Calculate enrichments of SLICE interactions

	matrix
	Generate a GAM matrix from a segregation file

	permute_segregation
	Circularly permute the columns of a GAM segregation file

	plot_np
	Plot the segregation results for a particular NP

	process_nps
	Map raw GAM sequencing data and call positive windows

	radial_pos
	Calculate chromatin radial position

	select
	Select only certain samples from a segregation file

Installation

GAMtools is intended to run in a command line environment on UNIX, LINUX
and Apple OS X operating systems. GAMtools can also be installed on Windows
using cygwin [https://cygwin.com].

The recommended way to install GAMtools is to use python’s package manager,
pip. This method should ensure that all of GAMtools required dependencies
are installed automatically.

Alternatively, GAMtools can be installed by downloading the source code
and compiling it manually.

Installing stable releases using pip

To install the latest stable release using pip, you need to run the
following command:

$ pip install gamtools

pip should automatically find and install any mandatory dependencies
that are not currently installed. Additional optional dependencies are
required for full GAMtools functionality, but these must be
installed manually.

Installing from source (GitHub)

If you want to install the latest development version of GAMtools,
you will need to install from source code. First, clone the
GAMtools repository [https://github.com/pombo-lab/GAMtools] from GitHub:

$ git clone https://github.com/pombo-lab/gamtools.git

Then install the downloaded package using pip:

$ pip install gamtools/

Or if pip is not installed:

$ cd gamtools
$ python setup.py install

Installation using pip is the preferred method, as this will handle installing
the mandatory dependencies automatically. If GAMtools is installed using
python setup.py install you may need to manually install
mandatory dependencies yourself.

Troubleshooting

GAMtools requires numpy [http://www.numpy.org] and cython [http://cython.org] to be installed before it can compile
properly. If you are installing using pip, numpy and cython should be installed
automatically, but there is a chance this might not work. If you are having issues
installing GAMtools, the first step is to ensure both numpy and cython are
properly installed:

$ pip install cython numpy

If you are still having problems, please post a ticket on our GitHub issues [https://github.com/pombo-lab/GAMtools/issues] page.

Mandatory dependencies

GAMtools depends on a number of additional python libraries, which must
be installed for it to function correctly. These libraries are normally
installed automatically during the GAMtools installation process.

Mandatory python dependencies

	doit [http://pydoit.org]

	numpy [http://www.numpy.org]

	scipy [http://www.scipy.org]

	cython [http://cython.org]

	pandas [http://pandas.pydata.org]

	wrapit [https://github.com/rbeagrie/wrapit/]

These python libraries can all be installed using pip:

$ pip install doit numpy scipy cython pandas wrapit

Optional dependencies

Some features in GAMtools depend on additional libraries and/or
programs which are not installed automatically.

Making plots

The gamtools plot_np command requires some python plotting libraries to be
installed. These may also be required for the gamtools call_windows command
if the --fitting-folder flag is specified.

Optional python dependencies

	matplotlib [http://matplotlib.org/]

	pybedtools [https://pythonhosted.org/pybedtools/]

	metaseq [https://pythonhosted.org/metaseq/]

Working with raw sequencing data

The gamtools process_nps command is used to map and process raw sequencing
data from NPs. This can require a number of additional command line programs
to be installed and configured:

Mapping and processing programs

	Program
	Required for

	Bowtie2 [http://bowtie-bio.sourceforge.net/bowtie2]
	Mapping raw sequencing data.

	samtools [http://www.htslib.org/]
	Mapping raw sequencing data.

	bedtools [https://bedtools.readthedocs.io/en/latest/index.html]
	Calling positive windows for an NP.

	bedGraphToBigWig [http://hgdownload.cse.ucsc.edu/admin/exe/]
	Creating bigwigs (--bigwigs flag)

	bedToBigBed [http://hgdownload.cse.ucsc.edu/admin/exe/]
	Creating bigbeds (--bigbeds flag)

	fastqc [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/]
	Performing dataset quality control (--do-qc flag)

	fastq_screen [http://www.bioinformatics.bbsrc.ac.uk/projects/fastq_screen/]
	Performing dataset quality control (--do-qc flag)

Testing your installation

To test that you have installed gamtools and all its dependencies correctly you
can run the command gamtools test. If you have skipped installing any
optional dependencies, you may get a warning message saying something like “x
could not be found, and is required for y”. You can safely ignore these
messages unless you need the particular gamtools functionality in the message.

Tutorial

First steps

Installing GAMtools

The first step in the GAMtools tutorial is to make sure that GAMtools
is properly installed. Try to run gamtools --help and make sure that you
get the following ouput:

$ gamtools --help
usage: gamtools [-h]
 {call_windows,convert,enrichment,matrix,permute_segregation,plot_np,process_nps,select}
 ...

If this command gives you an error message, it is likely that GAMtools has
not been installed correctly. Please ensure you have followed the steps
outlined in the Installation guide.

Downloading the tutorial data

Once GAMtools is working correctly, you need to download some example data
to work with during the tutorial. The tutorial data is located on the GAMtools
website [http://gam.tools/tutorial_data.tar.gz]. Download the tutorial data
(e.g. by using wget), extract it and cd into the newly created directory. The
directory should contain a folder called fastqs and a file called
clean.sh.

$ wget http://gam.tools/tutorial_data.tar.gz
$ tar zxvf tutorial_data.tar.gz
$ cd gamtools_tutorial
$ ls
clean.sh fastqs/

The fastqs folder contains sequencing data from 100 separate nuclear
profiles (NPs):

$ ls fastqs/
NP_001.fq.gz NP_026.fq.gz NP_051.fq.gz NP_076.fq.gz
NP_002.fq.gz NP_027.fq.gz NP_052.fq.gz NP_077.fq.gz
NP_003.fq.gz NP_028.fq.gz NP_053.fq.gz NP_078.fq.gz
NP_004.fq.gz NP_029.fq.gz NP_054.fq.gz NP_079.fq.gz
NP_005.fq.gz NP_030.fq.gz NP_055.fq.gz NP_080.fq.gz
...
NP_025.fq.gz NP_050.fq.gz NP_075.fq.gz NP_100.fq.gz

These files are the primary raw output of a GAM experiment.
The first thing we need to do with the sequencing data is to “map” it to a
genome. The example data comes from mouse embryonic stem cells, so we need to
map it to the mouse genome, which we will do using bowtie2 [http://bowtie-bio.sourceforge.net/bowtie2]. If you already
have bowtie2 and a mouse genome assembly installed and configured on your local
machine, you can skip the next step (mouse assembly mm9 is preferred, but any
other assembly should work with this tutorial).

Configuring bowtie2

If you have not yet installed bowtie2 [http://bowtie-bio.sourceforge.net/bowtie2], please follow the installation
instructions on the bowtie2 homepage [http://bowtie-bio.sourceforge.net/bowtie2]. Once you have bowtie installed,
verify that everything is working correctly:

$ bowtie2 --version
/home/rob_000/bowtie2-2.2.9/bowtie2-align-s version 2.2.9
64-bit
Built on Windows8
30 Apr 2016 18:13:39

We next need to provide the sequence of the mouse genome for bowtie to map
against. If you wish, you can download and configure the full mouse mm9
“index” [ftp://igenome:G3nom3s4u@ussd-ftp.illumina.com/Mus_musculus/UCSC/mm9/Mus_musculus_UCSC_mm9.tar.gz]
from Illumina. However, the 100 sequencing datasets provided as part of the
tutorial only contain sequencing data from a small region of chromosome 19, so
you can also use a special truncated index [http://gam.tools/tutorial_index.tar.gz] containing only the sequence of
mouse chromosome 19. This will allow bowtie to run much faster whilst using
less RAM, and is perfectly sufficient for completing this tutorial. If you
wish to use the tutorial index, download it from the GAMtools website,
extract it to the same folder as fastqs and configure bowtie to use the new
truncated index:

$ wget http://gam.tools/tutorial_index.tar.gz
$ tar zxvf tutorial_index.tar.gz
$ ls
clean.sh fastqs/ genome/
$ export BOWTIE2_INDEXES=$(pwd)/genome/
$ ls $BOWTIE2_INDEXES
genome.1.bt2 genome.3.bt2 genome.rev.1.bt2 chr19.size
genome.2.bt2 genome.4.bt2 genome.rev.2.bt2

Mapping the sequencing data and calling positive windows

The GAMtools command used for mapping NP sequencing data is gamtools
process_nps. The process_nps command has a lot of different parameters
and options, you can use the --help flag to get a full description of all
the available parameters. Further information about the process_nps
command can also be found on the process_nps page.

$ gamtools process_nps --help
usage: gamtools process_nps [-h] -g GENOME_FILE [-o OUPUT_DIRECTORY]
 [-f FITTINGS_DIRECTORY] [-d DETAILS_FILE] [-i]
 [-b] [-c] [-w WINDOW_SIZE [WINDOW_SIZE ...]] [-m]
 [-s MATRIX_SIZE [MATRIX_SIZE ...]]
 [--qc-window-size QC_WINDOW_SIZE]
 [--additional-qc-files [ADDITIONAL_QC_FILES [ADDITIONAL_QC_FILES ...]]]
 [-q MINIMUM_MAPQ] [--doit-db-file DEP_FILE]
 [--doit-backend {sqlite3,json,dbm}]
 [--doit-verbosity {0,1,2}]
 [--doit-reporter {json,console,zero,executed-only}]
 [--doit-process NUM_PROCESS]
 [--doit-parallel-type {process,thread}]
 INPUT_FASTQ [INPUT_FASTQ ...]

For now, we can just use the default options. That means that all we need to specifiy
is a genome file (using -g/--genome-file) and a list of input fastq files:

$ gamtools process_nps -g genome/chr19.size fastqs/*.fq.gz

This tells GAMtools to use the genome file genome/chr19.size .You
will have this file if you downloaded the special truncated index. If you
are using your own mouse genome index, you will have to specify your own
genome file (which is usually named something like mm9.chrom.sizes).
The next argument tells GAMtools to process all of the files with the
extension ”.fq.gz” in the folder called “fastqs”. When you run the
command, GAMtools will start mapping the sequencing data, and you
should see an output like this:

$ gamtools process_nps -g genome/chr19.size fastqs/*.fq.gz
-- Creating output directory
. Mapping fastq:fastqs/NP_025.fq.gz
. Mapping fastq:fastqs/NP_017.fq.gz
. Mapping fastq:fastqs/NP_065.fq.gz
. Mapping fastq:fastqs/NP_014.fq.gz
. Mapping fastq:fastqs/NP_090.fq.gz
. Mapping fastq:fastqs/NP_078.fq.gz

GAMtools will then proceed to map all 100 individual sequencing files to
the mouse genome. This will take around 5 minutes if you are using the
truncated index and a moderately fast computer. If you are using your own full
mouse genome index, it may take a little longer. Once it has mapped the files,
GAMtools will sort the mapped files, remove PCR duplicates and create an
index for fast data retrieval.

The final steps are to compute the number of
reads from each NP that overlap each 50kb window in the supplied genome file,
and then to use this read coverage count to determine which of the windows was
present in the original NP. After performing this “window calling” step,
gamtools produces a file called segregation_at_50kb.table. This file
contains one row per 50kb window, and one column per NP:

Show the first 10 rows and first 5 columns of the segregation table
$ head segregation_at_50kb.table | cut -f 1-5
chrom start stop fastqs/NP_027.rmdup.bam fastqs/NP_020.rmdup.bam
chr19 0 50000 0 0
chr19 50000 100000 0 0
chr19 100000 150000 0 0
chr19 150000 200000 0 0
chr19 200000 250000 0 0
chr19 250000 300000 0 0
chr19 300000 350000 0 0
chr19 350000 400000 0 0
chr19 400000 450000 0 0

For each NP column, 0 indicates that the window was not present in the NP,
whereas 1 indicates that the window was present. This table is the crucial
and most important output of a GAM experiment - all further downstream
analysis will generally be based on the segregation table.

Producing proximity matrices

Now that we have produced a segregation table at 50kb resolution, we can
use it to calculate a proximity matrix, using the gamtools matrix
command. As for the process_nps command, the matrix command has
a lot of different options, which can be explored further using
the --help flag or on the gamtools matrix page.

$ gamtools matrix --help
usage: gamtools matrix [-h] -r REGION [REGION ...] -s SEGREGATION_FILE
 [-f {csv.gz,txt,csv,txt.gz,npz}]
 [-t {cosegregation,linkage,dprime}] [-o OUTPUT_FILE]

optional arguments:
 -h, --help show this help message and exit
 -r REGION [REGION ...], --regions REGION [REGION ...]
 Specific genomic regions to calculate matrices for. If
 one region is specified, a matrix is calculated for
 that region against itself. If more than one region is
 specified, a matrix is calculated for each region
 against the other. Regions are specified using UCSC
 browser syntax, i.e. "chr4" for the whole of
 chromosome 4 or "chr4:100000-200000" for a sub-region
 of the chromosome.
 -s SEGREGATION_FILE, --segregation_file SEGREGATION_FILE
 A segregation file to use as input
 -f {csv.gz,txt,csv,txt.gz,npz}, --output-format {csv.gz,txt,csv,txt.gz,npz}
 Output matrix file format (choose from: csv.gz, txt,
 csv, txt.gz, npz, default is txt.gz)
 -t {cosegregation,linkage,dprime}, --matrix-type {cosegregation,linkage,dprime}
 Method used to calculate the interaction matrix
 (choose from: cosegregation, linkage, dprime, default
 is dprime)
 -o OUTPUT_FILE, --output-file OUTPUT_FILE
 Output matrix file. If not specified, new file will
 have the same name as the segregation file and an
 extension indicating the genomic region(s) and the
 matrix method

We can start by asking for the proximity matrix for our region of interest
in png format:

$ gamtools matrix -s segregation_at_50kb.table \
> -r chr19:10,000,000-15,000,000 -o my_matrix.png
starting calculation for chr19:10,000,000-15,000,000
region size is: 100 x 100 Calculation took 1.05s
Saving matrix to file my_matrix.png
Done!
$ open my_matrix.png

You should see an image file that looks like this:

[image: ../_images/chr19_50kb_matrix.png]
Note that the example data for this tutorial only covers this specific
region of chromosome 19, so if you specify a larger or different region
you will get some strange looking results:

$ gamtools matrix -s segregation_at_50kb.table \
> -r chr19:8,000,000-17,000,000 -o larger_matrix.png
starting calculation for chr19:8,000,000-17,000,000
region size is: 180 x 180 Calculation took 3.47s
Saving matrix to file larger_matrix.png
Done!
$ open larger_matrix.png

[image: ../_images/chr19_large_50kb_matrix.png]
By default, GAMtools produces proximity matrices using the
normalized linkage disequilibrium (or D’). In this case, it first
calculates how many times each pair of windows are found together in
the same NP, and then normalizes the matrix according to how many times
each window is detected across the collection of NPs. You can create
raw, un-normalized co-segregation matrices by specifying the
cosegregation option using the -t/--matrix-type flag:

$ gamtools matrix -s segregation_at_50kb.table \
> -r chr19:10,000,000-15,000,000 -o cosegregation_matrix.png \
> -t cosegregation
starting calculation for chr19:10,000,000-15,000,000
region size is: 100 x 100 Calculation took 1.05s
Saving matrix to file cosegregation_matrix.png
Done!
$ open cosegregation_matrix.png

[image: ../_images/chr19_50kb_coseg_matrix.png]

Working at different resolutions

If we want to produce a proximity matrix at a resolution other than
50kb, we first need to calculate a segregation table at that
resolution. We can generate another segregation table using the
process_nps command, specifying the resolution using the
-w/--window-sizes flag. For example at 30kb resolution:

$ gamtools process_nps -w 30000 -g genome/chr19.size fastqs/*.fq.gz
-- Creating output directory
-- Mapping fastq:fastqs/NP_025.fq.gz
-- Mapping fastq:fastqs/NP_017.fq.gz
-- Mapping fastq:fastqs/NP_065.fq.gz
-- Mapping fastq:fastqs/NP_014.fq.gz
-- Mapping fastq:fastqs/NP_090.fq.gz
-- Mapping fastq:fastqs/NP_078.fq.gz
...
...
...
. Getting coverage:30kb windows
. Calling positive windows:30kb

Notice that all the lines except the last two begin with --, whereas the
last two lines begin with .. The -- indicates that GAMtools
realized that these tasks have already been completed and therefore do not
need to be re-run. When we re-calculate a segregation table at a new
resolution, we don’t need to remap all the individual fastq files, we only
need to re-compute the read depth over all 30kb windows, and then decide
which 30kb windows were positive in each NP.

To create proximity matrices at the new resolution, we need to specify
the new segregation table: segregation_at_30kb.table.

$ gamtools matrix -s segregation_at_30kb.table \
> -r chr19:10,000,000-15,000,000 -o 30kb_matrix.png
starting calculation for chr19:10,000,000-15,000,000
region size is: 167 x 167 Calculation took 0.047s
Saving matrix to file 30kb_matrix.png
Done!
$ open 30kb_matrix.png

[image: ../_images/chr19_30kb_matrix.png]

Performing quality control checks

If you are generating your own GAM datasets, you will want to perform some
checks to ensure your NPs are of sufficient quality. GAMtools will
generate a table of QC parameters automatically for each NP if you use
the process_nps command with the -c/--do-qc flag.

Note

Performing quality control requires a number of additional dependencies to be installed. Please ensure that gamtools test runs with no errors before continuing with this section.

Re-running the gamtools process_nps command with the --do-qc flag
will instruct GAMtools to run a number of additional tasks. Your
output should look something like this:

$ gamtools process_nps --do-qc -g genome/chr19.size fastqs/*.fq.gz
-- Creating output directory
-- Mapping fastq:fastqs/NP_025.fq.gz
-- Mapping fastq:fastqs/NP_017.fq.gz
-- Mapping fastq:fastqs/NP_065.fq.gz
...
...
...
. Creating QC parameters file with default values
. Getting mapping stats
. Getting segregation stats
. Running fastqc:fastqs/NP_042.fq.gz
. Running fastqc:fastqs/NP_043.fq.gz
...
. Running fastqc:fastqs/NP_070.fq.gz
. Running fastq_screen:fastqs/NP_063.fq.gz
. Running fastq_screen:fastqs/NP_050.fq.gz
...
. Running fastq_screen:fastqs/NP_081.fq.gz
. Getting quality stats
. Getting contamination stats
. Merging stats files
. Finding samples that pass QC
. Filtering samples based on QC values:50kb

By default, GAMtools generates several QC files, each containing
different information about the collection of NPs:

	The number of sequenced, mapped, and unique (i.e. excluding
PCR duplicates) reads are saved in mapping_stats.txt

	Statistics regarding the number and distribution of positive
windows are saved in segregation_stats.txt

	Statistics regarding the sequencing quality scores and the
number of mono- and di-nucleotide repeat containing reads
are calculated by fastqc [http://www.bioinformatics.babraham.ac.uk/projects/fastqc/] and saved to
quality_stats.txt

	Statistics regarding the percentage of reads mapping to
different genomes (i.e. contaminating reads) are
calculated by fastq_screen [http://www.bioinformatics.bbsrc.ac.uk/projects/fastq_screen/] and saved to
contamination_stats.txt

	These statistics files are merged together and the resulting
table containing all the different QC parameters is saved
to merged_stats.txt

Once the merged stats table has been saved, GAMtools will
attempt to filter out “poor quality” NPs, and generates a file
called samples_passing_qc.txt containing only high-quality
NPs. GAMtools filters out NPs which match any rules in the
qc_parameters.cfg file, which is created with some default
rules if it does not exist. Finally, GAMtools creates new
segregation tables that exclude poor-quality NPs. In our case,
this file will be called segregation_at_50kb.passed_qc.table.
You can use this new segregation table to re-generate the
proximity matrices (see Producing proximity matrices).

gamtools API

Background

GAMtools offers a programmatic API in python, which allows other programmers
or bioinformaticians to use GAMtools functionality in their own applications
or pipelines.

GAMtools modules

	gamtools.call_windows module

	gamtools.compaction module

	gamtools.cosegregation module

	gamtools.enrichment module

	gamtools.matrix module

	gamtools.permutation module

	gamtools.radial_position module

	gamtools.segregation module

gamtools.call_windows module

gamtools.compaction module

gamtools.cosegregation module

gamtools.enrichment module

gamtools.matrix module

gamtools.permutation module

gamtools.radial_position module

gamtools.segregation module

call_windows

The gamtools call_windows tool determines which genomic regions were present in each NP.
The input file is a tab delimited table in which the first three columns indicate the
genomic region in bed format (chrom, start, stop) and the remaining columns give the number
of reads mapping to each genomic region for each NP. For example:

chrom start stop NP_1 NP_2 NP_3 NP_4 NP_5
chr19 0 50000 0 0 0 0 0
chr19 50000 100000 1 26 1 54 0
chr19 100000 150000 0 34 0 0 1
chr19 150000 200000 2 16 0 0 0
chr19 200000 250000 0 1 32 7 0
chr19 250000 300000 3 0 0 0 1
chr19 300000 350000 1 4 50 12 0
chr19 350000 400000 2 3 32 1 3
chr19 400000 450000 0 0 115 0 0

This type of coverage table can be generated quite easily using
bedtools multicov [https://bedtools.readthedocs.io/en/latest/content/tools/multicov.html] and is generated automatically by the GAMtools
process_nps command.

The output file is in the same format, but each entry is either a 1
(indicating the region was present) or a 0 (indicating that it was
absent).

chrom start stop NP_1 NP_2 NP_3 NP_4 NP_5
chr19 0 50000 0 0 0 0 0
chr19 50000 100000 0 1 0 1 0
chr19 100000 150000 0 1 0 0 0
chr19 150000 200000 0 1 0 0 0
chr19 200000 250000 0 0 1 0 0
chr19 250000 300000 0 0 0 0 0
chr19 300000 350000 0 0 1 1 0
chr19 350000 400000 0 0 1 0 0
chr19 400000 450000 0 0 1 0 0

Usage and option summary

Usage:

gamtools call_windows [OPTIONS] <COVERAGE_TABLE>

Optional parameters:

	Option
	Description

	-d, –details-file
	Write a table of fitting parameters to this path

	-o, –output-file
	Output segregation file to create (or “-” to write to stdout), default is stdout

	-f, –fitting-folder
	Save plots for each individual curve fitting to this folder

compaction

The gamtools compaction tool is used to calculate chromatin compaction from
GAM segregation tables. Chromatin compaction is estimated from the number of
NPs that contain a given chromatin region, since chromatin that occupies a larger
volume will be intersected by a greater number of NPs.

Usage and option summary

Usage:

gamtools compaction [OPTIONS] -s <SEGREGATION_FILE> -o <OUTPUT_FILE>

Optional parameters:

	Option
	Description

	-n, –no-blanks
	Exclude regions that were never detected from the output (for making bedgraphs)

convert

The gamtools convert tool is used to convert proximity matrices output by GAMtools to/from
various different formats.

Usage and option summary

Usage:

gamtools convert [OPTIONS] <INPUT_MATRIX> <OUTPUT_MATRIX>

Optional parameters:

	Option
	Description

	-i, –input-format
	Input matrix file format

	-o, –output-format
	Output matrix file format

	-t, –thresholds-file
	Thresholds file. If specified, any values lower than the specified thresholds will be masked/excluded from the output file

	-w, –windows-file
	File containing the genomic locations of matrix bins (only required if not specified in input matrix file).

	-r, –region
	Region covered by the input matrix (required if -w /–windows-file is specified)

enrichment

The gamtools enrichment tool is used to calculate the enrichment of pairwise
interactions between windows of different classes. For example, it can be used to
answer the question of whether a particular set of interactions connects windows
that contain genes with windows that contain enhancers more or less frequently
than would be expected by chance.

gamtools enrichment requires two input files. The first is a tab-delimited table giving
the pairwise interactions. This table must contain the following columns:

	Column
	Description

	chrom
	Name of the chromosome

	Pos_A
	index of the window on the left of the interaction

	Pos_B
	index of the window on the right of the interaction

	interaction
	strength of the interaction

Window indices used for Pos_A and Pos_B are 0-based, such that 0
would be the first window on the chromosome and 20 would be the 19th. An
example file might look like:

chrom Pos_A Pos_B interaction
chr1 10 20 0.75
chr2 10 20 0.50
chr1 10 30 0.40

The second input file is a comma-delimited (csv) table giving the classes of
each window. This table can have the following columns:

	Column
	Description

	chrom
	Name of the chromosome

	i
	index of the window

	start
	Start co-ordinate of the window (optional)

	stop
	Stop co-ordinate of the window (optional)

Any additional columns will be interpreted as different classes. Each
class column should indicate whether the given window is a member of
the class with the values False or True. An example classification
table might look like this:

chrom,i,Enhancer,Gene
chr1,10,True,False
chr1,20,False,True
chr2,20,True,False
chr2,30,False,True

The output is a csv file in the following format:

	Column
	Description

	class1
	First class involved in interaction

	class2
	Second class involved in interaction

	count
	Number of interactions where a window in class1 interacts with a window in class2

	permuted
	Whether or not the interactions table was randomly permuted before counting

For example:

class1,class2,count,permuted
Gene,Gene,234148,yes
Gene,Enhancer,268228,yes
Enhancer,Enhancer,10598,yes

Usage and option summary

Usage:

gamtools enrichment [OPTIONS] -i <INTERACTIONS_FILE> -c <CLASSES_FILE>

Optional parameters:

	Option
	Description

	-o, –output-prefix
	First part of the output file name (default is “enrichment_results”)

	-p, –permutations*
	Number of times to randomly permute the input file

	-n, –no-permute*
	Do not permute the input file, instead calculate observed counts

* Options -p/-n are mutually exclusive, exactly one of these two options must be given

matrix

The gamtools matrix tool is used to calculate proximity matrices from
segregation tables.

Usage and option summary

Usage:

gamtools matrix [OPTIONS] -s <SEGREGATION_FILE> -r <REGION> [<REGION> ...]

Optional parameters:

	Option
	Description

	-f, –output-format
	Output matrix file format (choose from: csv.gz,
txt.gz, npz, txt, csv, png, default is txt.gz)

	-t, –matrix-type
	Method used to calculate the interaction matrix
(choose from: cosegregation, linkage, dprime,
default is dprime)

	-o, –output-file
	Output matrix file. If not specified, new file
will have the same name as the segregation file
and an extension indicating the genomic
region(s) and the matrix method

Specifying regions

The -r/–regions parameter allows the user to specify the
specific genomic regions to calculate matrices for. If
one region is specified, a matrix is calculated for
that region against itself. If more than one region is
specified, a matrix is calculated for each region
against the other. Regions are specified using UCSC
browser syntax, i.e. “chr4” for the whole of
chromosome 4 or “chr4:100000-200000” for a sub-region
of the chromosome.

permute_segregation

The gamtools permute_segregation tool is used to circularly permute
segregation tables. This can be handy for generating random background
matrices, as the random permutation should remove any specific long-range
interactions.

Usage and option summary

Usage:

gamtools permute_segregation -s <SEGREGATION_FILE> -o <OUTPUT_FILE>

plot_np

The gamtools plot_np tool is used to plot the sequencing coverage and the
window calling output for a single NP over the whole genome. It can be very
useful as a quick quality control, as NPs that have been sequenced correctly
display a characteristic pattern of coverage, with many large regions (up to
whole chromosomes) displaying very low coverage.

Plotting the coverage for an NP requires three files, a bigwig file made from
the raw sequencing data, a bed file containing the positive windows and a
file containing a list of chromosomes and their lengths in bp (a genome file).

Usage and option summary

Usage:

gamtools plot_np -w BIGWIG_FILE -b BED_FILE
 -g GENOME_FILE -o OUTPUT_FILE

process_nps

The gamtools process_nps tool is used to map raw sequencing data
from a collection of NPs and call positive windows from those NPs
to generate a segregation table. It can optionally also calculate
various QC metrics for each NP, generate bigwig/bed files for
visualising the raw data and calculate proximity matrices.

Usage and option summary

Usage:

gamtools process_nps [OPTIONS] -g <GENOME_FILE> <FASTQ_FILE> [<FASTQ_FILE> ...]

Optional parameters:

	Option
	Description

	-o, –output_dir
	Write segregation, matrix etc. to this directory

	-q, –minimum-mapq
	Filter out any mapped read with a mapping quality less
than x (default is 20, use -q 0 for no filtering)

	-c, –do-qc
	Perform sample quality control.

	-i, –bigwigs
	Make bigWig files.

	-b, –bigbeds
	Make bed files of positive windows

	-w, –window-sizes
	One or more window sizes for calling positive windows

	-s, –matrix-sizes
	Resolutions for which proximity matrices should be
produced.

	–qc-window-size
	Use this window size for qc (default is median window
size).

	-f, –fittings_dir
	Write segregation curve fitting plots to this
directory

	-d, –details-file
	If specified, write a table of fitting parameters to
this path

	–additional-qc-files
	Any additional qc files to filter on

Parameters inherited from doit:

gamtools process_nps uses doit [http://pydoit.org] as a task dependency engine, to
determine what actions need to be performed and in which order. A number
of additional command line parameters are available that control doit’s behaviour.

	Option
	Description

	–doit-db-file
	Doit saves information about each run in a
database file. This parameter specifies the
location of that database file.

	–doit-backend
	Doit database format. (one of
sqlite3, json, dbm. default: dbm)

	–doit-verbosity
	0 capture (do not print) stdout/stderr from task.
1 capture stdout only.
2 do not capture anything (print everything
immediately). Default: 1

	–doit-reporter
	Where should doit report the output from each task. One
of (json, console, zero, executed-only). Default: console

	–doit-process
	Number of subprocesses (default is 0, i.e. serial processing)

	–doit-parallel-type
	Tasks can be executed in parallel in different ways:
process: uses python multiprocessing module
thread: uses threads. Default is process.

radial_pos

The gamtools radial_pos tool is used to calculate chromatin radial
positioning from GAM segregation tables. Radial positioning is estimated from
the average size of NPs that contain a given chromatin region, since chromatin
that occupies a more peripheral position will be intersected by smaller, more
apical NPs (i.e. those which slice the nucleus close to the top/bottom/sides),
whereas more central chromatin can only be intersected by larger, more
equatorial NPs (i.e. those which slice the nucleus through the middle).

The size of each NP is estimated from it’s genomic coverage, i.e. the number
of positive windows. NPs which contain a larger number of positive windows
are assumed to also be larger in volume.

Usage and option summary

Usage:

gamtools radial_pos [OPTIONS] -s <SEGREGATION_FILE> -o <OUTPUT_FILE>

Optional parameters:

	Option
	Description

	-n, –no-blanks
	Exclude regions that were never detected from the output (for making bedgraphs)

select

The gamtools select tool is used to select or exclude samples
from a segregation table.

Usage and option summary

Usage:

gamtools select [OPTIONS] -s <SEGREGATION_FILE> -o <OUTPUT_FILE>
 -n [<SAMPLE_NAME> [<SAMPLE_NAME> ...]]

Required parameters:

	Option
	Description

	-s, –segregation-file
	A file containing the segregation of all samples

	-n, –sample-names
	Names of the samples to remove

	-o, –output-file
	Output file path (or - to write to stdout)

Optional parameters:

	Option
	Description

	-d, –drop-samples
	Discard the listed samples (default: discard samples
not in the list)

Index

 _static/ajax-loader.gif

_static/file.png

_static/down-pressed.png

_static/up-pressed.png

_static/plus.png

_static/comment-bright.png

_static/comment.png

_static/down.png

_static/comment-close.png

_static/up.png

_images/chr19_30kb_matrix.png

_static/minus.png

nav.xhtml

 Table of Contents

 		GAMtools: Utilities for working with Genome Architecture Mapping data.

 		Overview

 		Summary of available tools.

 		Installation

 		Installing stable releases using pip

 		Installing from source (GitHub)

 		Troubleshooting

 		Mandatory dependencies

 		Mandatory python dependencies

 		Optional dependencies

 		Making plots

 		Optional python dependencies

 		Working with raw sequencing data

 		Mapping and processing programs

 		Testing your installation

 		Tutorial

 		First steps

 		Installing GAMtools

 		Downloading the tutorial data

 		Configuring bowtie2

 		Mapping the sequencing data and calling positive windows

 		Producing proximity matrices

 		Working at different resolutions

 		Performing quality control checks

 		API documentation

 		Background

 		gamtools.call_windows module

 		gamtools.compaction module

 		gamtools.cosegregation module

 		gamtools.enrichment module

 		gamtools.matrix module

 		gamtools.permutation module

 		gamtools.radial_position module

 		gamtools.segregation module

 		call_windows

 		Usage and option summary

 		compaction

 		Usage and option summary

 		convert

 		Usage and option summary

 		enrichment

 		Usage and option summary

 		matrix

 		Usage and option summary

 		permute_segregation

 		Usage and option summary

 		plot_np

 		Usage and option summary

 		process_nps

 		Usage and option summary

 		radial_pos

 		Usage and option summary

 		select

 		Usage and option summary

_images/chr19_50kb_coseg_matrix.png

_images/chr19_50kb_matrix.png

_images/chr19_large_50kb_matrix.png

